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Introduction and motivation
An operating system is not too useful on its own, its utility heavily grows

with the amount of programs that are able to run on it. HelenOS is a research
operating system that can currently run almost exclusively1 C programs that were
specifically written for it. It also has support for C++ and Python, but with
significant limitations, so these languages are not widely used for writing HelenOS
programs.

Rust is a relatively new programming language with a rich standard library and
modern tooling. It is considered to be the first language to bring the concepts of
data ownership and borrow checking to the programming mainstream. Although
Rust compiles directly to machine code and can achieve the same performance
as C, it offers guarantees regarding memory safety and the absence of undefined
behavior, unless the programmer uses blocks of unsafe code. There is also a large
ecosystem of pure-Rust implementations of various libraries, and mature support
for cross-compilation is available.

All these features make Rust a great candidate to port onto HelenOS, since
support for the language itself could enable easy porting of many existing applica-
tions. Thus, the goal of this thesis is to add HelenOS support to the Rust compiler
and standard library. It is not expected that we will implement support for every
feature that Rust standard library offers, instead, our work should provide a
solid baseline, and then focus on porting a set of applications that would provide
interesting functionality for HelenOS.

Structure of this thesis
This thesis is divided into four main chapters. Chapter 1 provides necessary

context and technical background about the systems we are working with. Chap-
ter 2 analyzes the process necessary for achieving our set goal of porting Rust and
discusses our selection of programs that we attempt to port. Chapter 3 describes
the resulting implementation of the language support – this includes additions to
the Rust compiler and standard library, as well as necessary changes in HelenOS.
Finally, Chapter 4 documents the steps necessary to setup and use our toolchain,
and showcases our success in running our selected programs on HelenOS.

1The HelenOS project includes a repository called harbours, located at https://github.com/
HelenOS/harbours. This project contains a collection of ports of C and C++ programs to
HelenOS. However, for each ported library or application, a configuration file must be created
with the location of the source code, a script to build the program, and another script to install
it in the correct location. This approach does not scale very well, and thus the amount of
software ported to HelenOS is still very limited. This led to our interest in possible significant
expansion of the software ecosystem of HelenOS by adding support for Rust.
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1 Technical background
This thesis has required building up a deep understanding of two complex

systems: the Rust compiler and standard library, and the HelenOS operating
system. Our work lies at the border between these two systems, where we need
to deal with tightly coupled and often times unobvious interactions between the
involved technologies.

While we assume that the reader is knowledgeable about the general area of
computer science and understands basic operating system terminology, we notice
that our work involves internals two projects that may not be familiar to many.
This chapter aims to provide sufficient explanations of all the relevant components
involved in our work, as well as some terminology specific to HelenOS and Rust.

Reading this chapter in its entirety rightaway is not essential, we recommend
the reader to use it as a reference that they can come back to when reading the
main body of the thesis.

1.1 HelenOS
HelenOS is a multiserver microkernel operating system. This means that the

system consists of a minimalistic kernel in combination with multiple servers
running in userspace. These servers provide all system functionality which can
run in non-privileged mode, i.e. services such as networking, filesystem, or device
drivers. All components of the system communicate with each other through
asynchronous message passing.

HelenOS draws significant inspiration from the Unix and POSIX standards,
but does not accept these APIs as dogmatic. HelenOS avoids implementing legacy
APIs which have modern alternatives,[1] and in some areas explores completely
novel implementation approaches, uncommon on other platforms. For example, it
avoids using network sockets and instead implements a custom API interface for
reading and writing to TCP streams.[2]

Since we will be working on a compiler to native executable binaries, it should
be mentioned that HelenOS executables are in the standard Executable and
Linkable Format (ELF) format. Dynamic linking, position-independent code and
thread-local storage are all supported. A loader server is responsible for setting
up all of this before the startup of each process (called a task in HelenOS).

1.2 Rust compiler
Both the Rust compiler and standard library are highly modular. The Rust

compiler, rustc, uses LLVM to generate assembly code, although alternative
experimental code-generation backends (GCC and cranelift) have been added
recently.

Rust allows installation of multiple toolchains on one system. A toolchain
specifies the version of Rust to use and the target platform for which programs
should be compiled.1 Rust uses the informal convention of target triples in the form

1Please note that this term is a bit overloaded, and, contextually, we might use the name
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<architecture>-<vendor>-<operating system>.[3] Each target triple is fully described
by a target specification, which we will discuss in more detail shortly. The product
of this thesis will be a set of new Rust targets and associated toolchains, one for
each CPU architecture of HelenOS.

One version of rustc, the compiler itself, can be used for multiple toolchains,
since configurations of all available targets are built into it. However, the rest of a
toolchain must be downloaded separately for each platform – this most imporantly
means a build of the standard library.

Build of any non-trivial Rust program is orchestrated by the Cargo package
manager. Cargo selects the correct toolchain based on command-line flags (for ex-
ample cargo +nightly --target x86_64-unknown-helenos) and uses rustc to compile
each crate – a Rust compilation/linkage unit, i.e. either a library, or the main
program with a main function – into an object file. Then it invokes a linker to
produce the final binary. The linker may be of a completely different suite than
the codegen backend, which is very important for us – HelenOS only provides a
GCC-based compiler suite, and we will need to use the GCC linker configured for
HelenOS to produce a HelenOS-compatible binary.

1.2.1 Rust target specifications
As is mentioned above, a single build of rustc can be used to compile programs

for multiple platforms. This is thanks to a database of target specifications
describing each target triple that Rust natively supports. These specifications are
stored in the directory compiler/rustc_target/src/spec/targets in the Rust source
tree, provided alongside this thesis as Attachment A.1. Each target definition
describes the features of the CPU architecture as well as the operating system.
This includes things like endianness, supported size of atomic operands, availability
of dynamic linking, or the name of the linker to use.

The target specifications are stored in the compiler as Rust source files, to
enable programmatic reuse of parts of configurations shared among the individual
targets of each operating system. However, an equivalent JSON representation is
specified, and Rust can export its specifications in this format, as well as load from
JSON completely custom configurations and then use them to compile programs.
An example of the complete configuration of the i686-unknown-haiku target is
shown in Code fragment 1.1.

Loading of custom target.json specifications is essential for development for
platforms not natively supported by Rust for various reasons. One such example
is the toolchain for building Rust programs for the AVR family of microcontrollers
(that are used – among other things – in Arduino boards).[4] It will be also helpful
for our work, since it will allow us to delay the step of compiling rustc to test first
basic Rust programs on HelenOS.

“toolchain” for the whole suite of Rust build tools, as well as for the HelenOS GCC-based
cross-compilation toolchain.
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Code fragment 1.1 Obtaining target.json for Haiku

$ rustc +nightly -Z unstable-options --print target-spec-json \
--target i686-unknown-haiku

{
"arch": "x86",
"cpu": "pentium4",
"crt-objects-fallback": "false",
"data-layout": "e-m:e-p:32:32-p270:32:32-p271:32:32-p272:64:64-i128:

128-f64:32:64-f80:32-n8:16:32-S128",
"dynamic-linking": true,
"linker-flavor": "gnu-cc",
"llvm-target": "i686-unknown-haiku",
"max-atomic-width": 64,
"metadata": {

"description": "32-bit Haiku",
"host_tools": true,
"std": true,
"tier": 3

},
"os": "haiku",
"pre-link-args": {
"gnu-cc": [

"-m32"
],
"gnu-lld-cc": [

"-m32"
]
},
"relro-level": "full",
"stack-probes": {
"kind": "inline"
},
"target-family": [
"unix"
],
"target-pointer-width": "32"

}
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1.3 Rust standard library
Rust has a quite extensive standard library. Apart from a large number

of commonly used primitives, functions, and data structures, it also provides
abstractions that wrap the platform-specific libc interfaces, allowing programs
to use features such as filesystem or networking without having knowledge of
the underlying platform implementation. This is a part of the reason why Rust
programs can be highly portable, but it also means that there is a large API
surface that will be necessary to implement for HelenOS.

The Rust standard library is divided into multiple crates with dependencies
between them, just like standard Rust projects. The core crate contains the primi-
tives that need to be available on any platform, including bare-metal environments
without an operating system – this includes basic data types that do not require
internal memory allocations, functions for pointer manipulation, fixed-size arrays,
or the Iterator interface.

The alloc crate requires the program to specify a memory allocator, and
provides common data structures that make use of it.

Finally, what is most commonly referred to as Rust standard library is the std
crate. This package re-exports everything from core and alloc, and additionally
provides any APIs that depend on operating system features. This will necessitate
most of the work on supporting HelenOS.

There are further support crates for various Rust language features which will
not be of much interest to this thesis, since they do not contain any OS-specific
code. The only remaining part worth explaining is panic_unwind/panic_abort:
these crates provide support for Rust’s panic mechanism, akin to exceptions in
C++. Rust panics also unwind the stack and run destructors on each stack frame,
however, unlike C++ exceptions, they are not considered a standard control flow
mechanism to be used in common situations. Instead, usage of the Result enum
type is preferred for error handling.[5]

Stack unwinding requires underlying support from the operating system C
libraries. For systems where this is not available, the panic_abort crate is used
instead. With this crate, causing a panic will immediately print the description
and location of the panic, and abort the program. For HelenOS, this is the
behavior we will use, since stack unwinding is not yet implemented there.
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1.4 CPU architectures
It is assumed that the reader is familiar with the concept of CPU architectures

and instruction sets. However, we would like to note that there is an unexpected
complexity therein.

Firstly, different systems might use different names for one platform. As an
example, the 64-bit extension of the x86 instruction set architecture is commonly
referred to using at least three different names: x86_64 (e.g. Rust), amd64 (e.g. He-
lenOS) or x64 (e.g. Windows). Same holds true for the 32-bit version, where i386
and i686 are often used interchangeably despite meaning slightly different revi-
sions. The corresponding HelenOS toolchain is named ia32, which is a technically
accurate label as well.

Secondly, almost every “architecture” is in fact a familiy of architectures with
multiple versions, as features were being added. A good example of this is 32-bit
ARM. On HelenOS, this target is called simply arm32, although there exists a large
number of variations. Versions armv6 to armv8 are all currently used in multiple
Rust targets. There is also the 16-bit Thumb instruction set designed for higher
code density.[6] This instruction set is supported as a mode of operation on some
ARM-architecture CPUs, and shares a lot of features with the standard ARM
instruction set. And finally, hard- and soft-float ABI needs to be distinguished
based on the presence of floating-point registers.[7]

All these features make the ARM architecture very versatile, enabling its usage
for use-cases ranging from low-power embedded devices to personal computers and
high-performance data centers. However, it simultaneously imposes additional
complexity on compiler developers, requiring from them extra caution when
determining the precise set of features to use for a given compilation target.

1.5 Related work
Rust has been ported to many platforms, including other research operating

systems with size of user base similar to HelenOS. Yet, there is little academic
work written about the process.

Authors of the Xous operating system have published a blog post about their
experience porting a subset of Rust standard library to Xous, but the article
focuses mostly on the practicalities of distributing the toolchain outside of the
official Rust distribution.[8]

Another team of 10 authors describes porting Rust to Intel SGX, a hardware-
supported trusted execution environment. This work is also very specific due to
the strict security requirements, and therefore most of the paper is oriented at
the methods of formal verification applied in the process.[9]

In conclusion, the author’s main guiding resource for this work was solely
official Rust documentation.[10] This guide sufficiently outlines the high-level
steps, however, it assumes high familiarity with the internals of the Rust compiler.
Eventually, the author has built a good enough understanding of the toolchain by
reading pieces of the source code, as well as sometimes by trial and error. This
thesis makes an attempt to slightly improve this gap and expose some of this
siloed knowledge in a written form.
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On the side of expanding capabilities of HelenOS, we can find multiple theses
of Charles University students that have driven HelenOS forward in various
areas. The aforementioned C++ runtime is a result of a Master thesis written
by Jaroslav Jindrák.[11] However, the feature potentially most interesting to us,
stack unwinding and exception handling, was determined to be too large of an
undertaking and the implementation has not been done in this work. Therefore,
we will not be able to use the unwinding behavior for Rust panics either.
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2 Analysis
This chapter describes our analysis of the process of porting Rust to a new

platform, the logical order of all the necessary steps, as well as our decisions
regarding the applications we will be using to test our resulting compilation
toolchain.

2.1 Process of enabling initial support
There is a large number of variables that affect whether an executable file

will run on a given platform. Successfully running a program requires a correct
description of the target platform in the compiler (see Chapter 1.2.1), finding
the shared and static libraries to link, proper handling of ELF relocations by the
operating system’s dynamic linker, correct implementation of thread-local storage
and many other things. We will come back in more detail to each of these areas
in Chapter 3, which examines the specific issues that needed to be resolved.

With this amount of complexity in mind, our process should be focused on
implementing and verifying the correctness of each of these features separately
from the rest of the system. An approach that will suit our situation well and
avoids exposing ourselves to all the potential issues at once, is the incremental
build model. This software development method, as defined by Pressman,[12]
describes starting with a minimal prototype, and then iteratively expanding its
capabilities. Each step taken should be as small as possible, in order to make it
easier to isolate the cause of any arising problems.

In our concrete case, the prototype comprises a minimal Rust program without
any usage of the Rust standard library runtime, compiled using an external
target.json specification on an unmodified version of rustc, and statically linked
directly with HelenOS libc.a.

An example of a suitable program is shown in Code fragment 2.1. As this file
opts out of using the std crate, any interaction with the outside world needs to be
done by calling C functions and usage of raw pointers. An attempt at running
this program will allow us to evaluate if support of Rust on HelenOS is at all
feasible, and we will be able to use it as a starting point for further development.
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Code fragment 2.1 A Minimal Rust program for HelenOS

#![feature(core_intrinsics)]
#![no_std]
#![no_main]
use core::{ffi, intrinsics::abort};

#[panic_handler]
fn panic(_info: &core::panic::PanicInfo) -> ! {

abort()
}

#[link(name = "c")]
#[link(name = "startfiles")]
extern "C" {

pub fn puts(c: *const ffi::c_char);
}

#[no_mangle]
fn main(

argc: ffi::c_int,
argv: *const *const ffi::c_char,

) -> ffi::c_int {
unsafe {

puts(b"Hello,␣world!\n\0".as_ptr() as *const ffi::c_char);
}
0

}

Once this program executes correctly, we can enable dynamic linking. Inde-
pendently from that, we can also attempt to point the Rust memory allocator to
libc::malloc and make use of dynamic structures from the alloc crate. When we
determine all these things to work reliably, we shall start gradually integrating
our target into the Rustc source tree, as native compiler targets are a prerequisite
for building the std crate.

2.2 Linking with HelenOS libraries
As briefly noted in our introduction, by default, HelenOS only distributes C

programs purpose-built for this OS. To build all these programs, it uses a build
system based on Meson. This build system manages the include paths and linkage
of correct libraries, but integrating external programs that have their own build
systems, yet alone a build system as complex as Rust’s bootstrap process, would
not be practical.

As part of our implementation, we should attempt to enable installation of
HelenOS libraries to a standard location where the linker can automatically find
them, as is the case with libraries on Linux.
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2.3 Rust standard library
Although Rust compiles to machine code and does not have a full runtime in

the sense of Java, C#, or Go, there is still some support code that needs to run
before the main function of a standard Rust program,1 just like C has __libc_main.
This runtime for Rust is located in library/std/src/rt.rs. Among other things,
this code calls into std::thread, which makes use of thread-local storage (TLS) to
store parts of state specific to each thread. TLS is also used in the std::io::stdin
module. This means that we will need a very solid TLS implementation to run
any Rust program with std at all.

After implementing the initial support as outlined above, our work can move
on to supporting library features that interact with the operating system. To
facilitate this, the standard library contains a platform abstraction layer for each
supported operating system. In this directory are consolidated implementations of
internal interfaces, used by the public high-level APIs of the standard library. Each
module in library/std/src/sys contains a large block of conditional compilation
directives in the following form:
cfg_if::cfg_if! {

if #[cfg(target_family = "unix")] {
mod unix;
use unix as imp;

} else if #[cfg(target_os = "windows")] {
mod windows;
use windows as imp;

// [...]
} else {

mod unsupported;
use unsupported as imp;

}
}

For most modules, the fallback unsupported module is provided. This mock
implementation causes the features to compile correctly, but fail at runtime when
called. However, there are also a few modules that are required to be implemented
for all target platforms and do not have any such fallback. These modules are:

• sys/alloc – memory allocation,
• sys/pal/<os>/sync – implementation of low-level locks and condition vari-

ables,
• sys/random – random number generation for the purpose of seeding HashMap

for security,
• sys/thread_local – thread-local storage.

We will therefore need to implement all of these APIs, at minimum.
For memory allocations, HelenOS libc provides the standard malloc and free

functions. Implementation of the Rust Allocator trait using these functions is
1Please do not confuse with the C main function. Rust standard library exposes a C main,

performs initialization, and then calls the Rust main. The difference between these two symbols
is that the Rust main name is mangled according to the Rust ABI. This is the reason why our
code in Code fragment 2.1 needs to use the #[no_mangle] attribute.
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already present in the Rust standard library, so it should be sufficient just activate
this implementation for HelenOS.

The locking and condition variable interface fully matches the fibril_mutex
and fibril_condvar APIs of HelenOS libc, so our implementation can simply defer
to these C functions.2 The sys/random module is also trivial, as it only needs to
call the rand function.

The thread-local storage API in Rust is quite complex, as it needs to provide
an abstraction that is possible to be implemented using diverse platform primitives.
One of the existing implementations is based on POSIX pthread_key_* API, which
is prepared in HelenOS, albeit not yet implemented. Nonetheless, we determine
this to be the best method of enabling HelenOS support, as it offers a convenient
reduction in complexity and avoid the need of studying the Rust abstraction, and
we will only need to implement the standard POSIX API in HelenOS.

2.3.1 Selecting optional APIs
For the rest of the APIs in std/sys, we are free to choose which ones we want

to implement, and we can base these choices on the applications we want to be
able to run, as well as the maturity of the underlying HelenOS APIs.

Using admittedly a fairly unscientific approach, we decide to implement the
args, stdio, fs and thread APIs. We hypothese that this set of APIs is commonly
used in many CLI applications, so missing any of these APIs would make most
applications unusable. At the same time, these APIs have solid underlying support
in HelenOS and could be sufficient to support a large number of interesting CLI
tools – such tools typically read the command line arguments, load the input data
from disk, perform some computation and write the result back to disk.

2.3.2 Testing the standard library
Rust naturally has a large suite of tests for the standard library. However,

these tests are integrated into the Rust build system, and there is no easy way
of building the tests into a simple executable to then run on HelenOS. As an
alternative solution, Rust provides a remote test server – this is a program that
can be run on the target system that does not support running fully Rust tooling
natively. The development machine with the Rust compiler then connects to this
server and uses it to run the tests remotely.

We have looked into this option of running the tests, however, it would require
solid implementation of the networking API. This we have opted not to do, since we
expect it to involve non-trivial amount of extra work in the underlying HelenOS
implementation. To the best of author’s knowledge, no HelenOS application
uses a single TCP stream from multiple fibrils, so it is unclear if the current
implementation is thread-safe. That would be a necessity for the Rust standard
library – the traits Read and Write are implemented for &TcpStream, i.e. reads and

2Although HelenOS supports threads as known from standard operating systems, usage of
fibrils is preferred. A fibril is a lightweight thread that is implemented in HelenOS libc and is
not visible to the kernel. A notable difference is that fibrils cannot be preempted to switch to
another fibril of the same kernel thread, but for all practical purposes, the differences between
fibrils and threads are irrelevant to our work.
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writes can be made through a shared reference, which can be used from multiple
threads simultaneously.

Instead of running the official test suite, we will therefore need to create a small
custom test suite that will have the form of a standard Rust program with the
main function. This test suite should cover the public APIs that use the internal
platform-specific implementations that we will write for HelenOS.

2.4 Demo applications
To demonstrate the usefulness of our work, we want to choose a set of Rust

programs that we will port to HelenOS. These applications should take advantage
of the parts of the standard library that we will have implemented, and at the
same time avoid having too many other platform-specific dependencies.

We have determined image processing utilities to be a good demonstration of
the advantages of Rust that fits these constraints. An image processing library
typically has a large number of dependencies that provide support for different
image formats. For a traditional C program, each such library would require
separate configuration with the C cross-compilation toolchain, making the porting
process very tedious. However, in Rust, the build of all the crates should be fully
automatic, and we expect the image codecs to be pure algorithms written in Rust,
thus with no system-specific dependencies.

We have identified two command-line applications that fit this category:
resvg,3 a library for rendering vector files in the SVG format to PNG images, and
imagecli,4 a command-line tool for performing various transformations and format
conversions on images, similarly to the famous5 ImageMagick suite.

These applications will add the image processing capabilities to HelenOS.
However, we also notice that there would be no way of displaying the resulting
images. Although HelenOS has a native image viewer, it only supports the
uncommon TGA format. Therefore, we shall also write a simple image viewer
application that will take advantage of the available ecosystem of libraries to
support more common image formats. This application will also demonstrate the
capability of Rust to interface with native HelenOS libraries other than libc.

2.4.1 Choosing a GUI abstraction
Our image viewer application should aim for separation of the application

logic from the underlying raw UI implementation of the platform. After a research
of the common practices of writing GUIs in Rust, we have understood that the
traditional way of programming graphical user interfaces (GUIs), focused on
persistent widgets and interaction callbacks, is difficult to express in performant
and safe Rust abstractions. Instead, a paradigm called immediate mode has gained
significant popularity in the Rust ecosystem.[13][14]

Therefore, instead of trying to implement Rust abstractions on top of HelenOS
native suite of GUI widgets, we will base our GUI framework on of the Iced library.
As we will describe, this library should be the easiest to integrate into HelenOS,

3https://github.com/linebender/resvg
4https://github.com/theotherphil/imagecli
5See https://xkcd.com/2347/
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Figure 2.1 Operation of Iced applications

and will allow us to easily run the same application code on HelenOS as on other
platforms.

This library uses an architectures inspired by Elm, descibed in the documen-
tation as following:[15]

Our quick dissection has successfully identified three foundational ideas in
a user interface:

• Widgets — the distinct visual elements of an interface.
• Interactions — the actions that may be triggered by some widgets.
• State — the underlying condition or information of an interface.

These ideas are connected to each other, forming another feedback loop!
Widgets produce interactions when a user interacts with them. These
interactions then change the state of the interface. The changed state
propagates and dictates the new widgets that must be displayed. These
new widgets may then produce new interactions, which can change the
state again… And so on.

The feedback loop described in the citation is implemented in Iced a fully
platform-independent way. A component that is missing in this abstract description
is the platform runtime that renders the widgets onto the screen and sends the
detected interactions interaction events back to the framework. The full diagram
of the Iced architecture is shown in Figure 2.1. The bottom left section of it is
the part that we will need to implement specifically for HelenOS.

GUI libraries also typically use a GPU-based renderer using standardized APIs
such as OpenGL to draw the widgets onto the screen. Integrating any such API
into HelenOS would be enormously difficult, however, Iced luckily also provides a
renderer based on tiny-skia, a pure-Rust 2D graphics library that runs without
any GPU support.

All of these features should allow us to integrate Iced into HelenOS with
relatively little effort, since we will only need to implement drawing of a bitmap
into the application window, and translation of HelenOS events (mouse movement,
key presses) into Iced events.
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3 Implementation of required
HelenOS and Rust changes

This chapter describes the notable parts of our implementation of the HelenOS-
Rust toolchain, done as outlined in the previous chapter. The first part mainly
describes the issues that needed to be resolved to enable correct execution of
Rust programs on HelenOS, latter sections cover our code added to the standard
library.

3.1 Thread-local storage handling
When a new task is started in HelenOS, the kernel creates the address space for

the task, and the loader program is loaded into this address space. A connection
to this loader instance is then passed to the caller, who needs to communicate
with the loader to pass it the filesystem location of the ELF file to be executed.
The task of the loader is then to populate the address spaces with the contents
requested by the ELF, and finally jump to the entry point of the program.

Among the features that the ELF headers describe is the thread-local storage
(TLS). This section describes the size and alignment of the thread-local storage,
which has to be allocated for each thread before it starts executing. This means
that there are multiple places that can call the TLS initialization code:

• The loader, to prepare data the main thread of the program being loaded.

• Thread initialization code in libc, to prepare data for the new thread. This
also applies to HelenOS fibrils.

• The loader, to initialize the TLS for itself (!). That is because the loader
is a program just like any other, it is only special in the sense that it gets
started by the kernel in an empty address space. So the loader must be able
to do some rudimentary initialization of this address space for itself. This is
done in __libc_main by checking whether a program control block has been
passed to this function (which the loader does when calling __libc_main of
the actual program), and if not, calling tcb_make_initial.

3.1.1 Bug: reading the incorrect ELF file
The subtle bug we identified in the HelenOS implementation of the loader was

that it read the wrong ELF file when initializing the TLS. The _tcb_data_offset
function, which is responsible for reading the TLS information from the ELF
file, used the global variable __progsymbols.elfstart to get the memory location
of the ELF file. Notice that this is correct in latter two of the three cases listed
above, but not in the first one. In that case, __progsymbols refers to symbols of
the loader itself, but the caller needs to know the size of the TLS of the program
being loaded.
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Once uncovered, the fix is simple – a new parameter has to be added to
_tcb_data_offset, and we update all call sites.1 However, identification of this
issue proved difficult, as it had only manifested as data corruption when a
program allocates significantly larger amount of thread-local data than the loader
executable.

3.1.2 Bug: still using TLS parameters of the loader
After the first issue had been resolved, we noticed that for statically linked

programs, the thread-local storage was still being initialized with incorrect param-
eters. The cause of this issue lies between the loader and from libc, where various
pieces of code need to determine whether a given program is dynamically linked
or not. All of these functions appear to be implemented correctly and according
to comments in the source code. But upon closer inspection, we find that the
interaction between them again causes the loader to again use the parameters of
its own ELF file for TLS allocation for statically linked programs.

The ldr_load function, seen in Code fragment 3.1, first calls to the elf_load
function from libc to load data about the ELF file and link it with any dependen-
cies. Notably, this function detects if a binary is statically linked, and if so, the
field env is left empty. After ELF loading is done, the loader allocates the TLS
area and stores it as the thread control block prepared for the main thread of the
program. This is ensured by the rtld module for dynamically linked programs,
and the presumably simpler tls_make implementation is called for statically linked
binaries as well as when dynamic linking is completely disabled via a compilation
flag.

Code fragment 3.1 ldr_load from HelenOS loader program

static elf_info_t prog_info;

static int ldr_load(ipc_call_t *req)
{

errno_t rc = elf_load(program_fd , &prog_info);
if (rc != EOK) return 1;

#ifdef CONFIG_RTLD
if (prog_info.env) {

pcb.tcb = rtld_tls_make(prog_info.env);
} else {

pcb.tcb = tls_make(prog_info.finfo.base);
}

#else
pcb.tcb = tls_make(prog_info.finfo.base);

#endif
}

When we carefully look at the tls_make function listed in Code fragment 3.2,
we notice a problem very similar to the first issue – the function checks the value
of a global variable, but this variable again describes the loader, not the linker.

1The patch has been merged into HelenOS in this pull request: https://github.com/
HelenOS/helenos/pull/240/files
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Code fragment 3.2 tls_make from HelenOS libc

tcb_t *tls_make(const void *elf)
{
#ifdef CONFIG_RTLD

if (runtime_env != NULL)
return rtld_tls_make(runtime_env);

#endif

return tls_make_generic(elf, memalign);
}

The correct handling of this situation is not as clear as in the first issue. We
have considered adding an rtld_t* env parameter to the tls_make function, but
this parameter would be completely nonsensical if CONFIG_RTLD is disabled, and
generally a dependency on the run-time dynamic linker does not make sense in
TLS allocation API.

However, we notice that although the rtld_* functions seem to be avoided
for statically linked programs, in __libc_main, a rudimentary runtime is anyways
initialized for programs that do not have one. This leads us to a decision to fix
this issue by changing elf_load to create the rtld environment for all programs,
and then we will be able to use rtld_tls_make to allocate thread-local storage
for all programs. In fact, this allows completely removing the rtld_init_static
function, which duplicated a lot of code, and our patch in the end removes more
code than it adds, which is always a good sign.2

3.2 The pthread_key API
As noted in Chapter 2.3, our work needs to complete the implementation

of the pthread_key API in HelenOS. This task is relatively straightforward, as
shown in Code fragment 3.3, we can make use of built-in C thread-local variables.
We create such array that is used to store in each thread the values associated
with the keys, and leverage an atomic counter to distribute unique indices into
this array. Our implementation imposes an artificial limit on the number of keys
that can be used in one program, but we determine this to be acceptable. It is
highly uncommon for programs to use a large amount of thread-local variables,
and future extension of our implementation to an unlimited version is possible
by replacing the array with a dynamically allocated array, i.e. a pair of a pointer
and size.

After a discussion with HelenOS developers, support for destructors is omitted
in our implementation, as this feature has little use in practice, and would require
a lot of work to implement correctly.3 This causes all Rust programs to print a
warning about using this unsupported feature upon first spawning of an additional
thread, but we did not identify any effect on functionality or correctness.

2The patch has been merged into HelenOS in this pull request: https://github.com/
HelenOS/helenos/pull/242/files

3The discussion can be found in the comments of the pull request where our changes have
been eventually merged to HelenOS: https://github.com/HelenOS/helenos/pull/245
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Code fragment 3.3 Implementation of the pthread_key API

#define PTHREAD_KEYS_MAX 100
static fibril_local void *key_data[PTHREAD_KEYS_MAX];

static atomic_ushort next_key = 1; // skip the key 'zero'

void *pthread_getspecific(pthread_key_t key)
{

assert(key < PTHREAD_KEYS_MAX);
assert(key < next_key);
assert(key > 0);

return key_data[key];
}
// ... pthread_setspecific likewise ...

int pthread_key_create(
pthread_key_t *key, void (*destructor)(void *)

) {
unsigned short k = atomic_fetch_add(&next_key , 1);
if (k >= PTHREAD_KEYS_MAX) {

atomic_store(&next_key , PTHREAD_KEYS_MAX + 1);
return ELIMIT;

}
if (destructor != NULL) {

fprintf_once(stderr,
"pthread_key_create: destructors not supported\n");

}

*key = k;
return EOK;

}
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3.3 Changes in Rust
In the Rust compiler, the only changes needed were to add the HelenOS target

specifications. Although this was not a trivial task, since it sometimes required
trial and error as the author was not familiar with the precise effects of all the
options available in the target specification, the resulting code is not particularly
interesting.

The rest of this section therefore focuses on our changes in the Rust standard
library.

3.3.1 Filesystem API
Most of the filesystem APIs simply call to the respective functions in HelenOS

libc. Some portions of the API are left unsupported, since the functionality does
not exist in HelenOS. This is the case namely for file permissions and access times.

Our testing suite has helped us to find a bug in our implementation of the
read_dir function. Originally, our code only called the libc::opendir function, and
we used libc::readdir to get the individual entries only when the caller requested
them by iterating over the ReadDir struct. However, if the directory was modified
during this iteration, this implementation would skip some entries. Therefore
the logic had to be changed to load all the entries to a vector rightaway, and on
iteration return results from this vector.

3.3.2 Thread API
The thread API in Rust is relatively minimalistic. It requires the platform to

provide a method for starting threads, yielding, sleeping and joining a running
thread. When creating a new thread, the closure passed to pal::Thread::new is of
type Box<dyn FnOnce()>, i.e. an allocation of a trait object, which uses dynamic
dispatch. This, however, means that the Box needs to hold two pointers – one
to the data and one to the virtual function table. Thus the Box cannot be
cast into a standard C pointer, and one more level of indirection is needed.
This implementation is shown in Code fragment 3.4, and is re-used from similar
implementation for UNIX platforms.

In HelenOS, there is one extra complication – there is no fibril_join API. The
HelenOS USB drivers contain for this reason a wrapper called joinable_fibril,
so we have decided to implement a similar wrapper in Rust. We use a pair of a
mutex and a condition variable – the mutex stores information about whether the
fibril has exited, and the condition variable is used to notify the parent thread
waiting for the exit. Then we wrap the fibril_main function with the piece of
code in Code fragment 3.5.

The rest of the API implementations are rather mechanical in nature, and can
be inspected in Attachment A.1. As mentioned in the introduction of Chapter 1,
the amount of code sufficient to support Rust programs is not substantial, and
the above is sufficient to pass our test suite and run real-world applications. The
majority of the value of our work lies in understanding the integration of these
systems and resolution of all the issues that arised.
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Code fragment 3.4 Implementation of the Thread::new function

pub unsafe fn new(
stack: usize,
thread_main: Box<dyn FnOnce()>

)-> io::Result<Thread> {
let wrapper: Box<Box<dyn FnOnce()>> = Box::new(thread_main);
let p = Box::into_raw(wrapper) as *mut c_void;
let id = libc::fibril_create_generic(thread_start, p, stack);
if id.is_null() {

drop(Box::from_raw(p));
return Err("fibril_create␣failed");

}
libc::fibril_start(id);
return Ok(Thread { id });

extern "C" fn thread_start(main: *mut c_void) -> errno_t {
unsafe {

Box::from_raw(main as *mut Box<dyn FnOnce()>)();
}
libc::EOK

}
}

Code fragment 3.5 Wrapping the fibril_main function to enable joining threads

let done = Arc::new((Mutex::new(false), Condvar::new()));
let done_copy = Arc::clone(&done);
let fibril_main: Box<dyn FnOnce()> = Box::new(move || {

original_fibril_main();
*done_copy.0.lock().unwrap() = true;
done_copy.1.notify_all();

});
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4 Using the toolchain to build
Rust applications

In the previous chapter, we have described the changes necessary to make the
Rust toolchain for HelenOS work. This chapter documents the process of building
and using this toolchain, and provides a demonstration of its functionality by
compiling a suite of both CLI and GUI applications, as outlined in chapter 2.4.

4.1 Installing the toolchain
Since neither HelenOS provides ready-made builds of libraries and header

files for cross-compilation, nor is our new Rust toolchain already available pre-
packaged, each piece of the toolchain for compiling Rust programs for HelenOS
needs to be built from source. As a consequence, the first setup of the development
environment requires several steps. Description of this process is also provided
as documentation for the HelenOS targets in the Rust compiler, in the file
src/doc/rustc/src/platform-support/helenos.md in Attachment A.1. The following
sections provide an abridged copy of this guide with the full set commands included,
hopefully allowing the reader to reproduce our results. We assume a build for
the x86_64 version of HelenOS, the process for other architectures only requires
substitution of the architecture in relevant commands.

4.1.1 Building the HelenOS toolchain
The first requirement is building the HelenOS cross-compilation toolchain for

C and using it to build HelenOS libraries and header files. This can be done by
following the Compiling HelenOS from source guide.1 Full listing of the required
steps is provided in Code fragment 4.1.2

This builds everything that we need from HelenOS to build Rust programs,
copies the shared and static libraries to a path where the linker automatically
searches for it, and stores the location of the include directory in a variable for
later use.

4.1.2 Building the Rust compiler
Rust’s toolchain is well automated, so the necessary steps are relatively simple.

After Rust is installed on the development machine, preferrably using the official
1https://www.helenos.org/wiki/UsersGuide/CompilingFromSource
2As of the date of submission of this thesis, not all of our pull requests to HelenOS have been

merged. Therefore, the provided commands download our fork of HelenOS where the patches
are applied. We expect this requirement to cease soon and the official HelenOS repository at
https://github.com/HelenOS/helenos.git to be usable.

Also, we assume that the toolchain gets installed in the default location, which is
$HOME/.local/share/HelenOS/cross/. The path is shown in the output of the toolchain.sh com-
mand, and can be modified by setting the CROSS_PREFIX environment variable. In that case,
further usages of the relevant paths need to be updated.
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Code fragment 4.1 Building the HelenOS toolchain

mkdir helenos helenos-build
git clone https://github.com/mvolfik/helenos.git --depth 1

# Build amd64-helenos-gcc
cd helenos
./tools/toolchain.sh amd64
PATH=$PATH:$HOME/.local/share/HelenOS/cross/bin

cd ../helenos-build

# Build the shared libraries
../helenos/configure.sh amd64
ninja export-dev

# Copy the libraries to where linker finds them automatically
cp -P export-dev/lib/* ~/.local/share/HelenOS/cross/amd64-helenos/lib/

# Save the location of header files for later use
HELENOS_INCLUDE_BASE=$PWD/export-dev/include
export HELENOS_INCLUDE_BASE

rustup installer,3 the toolchain can be simply built by extracting our modified
Rust source code from Attachment A.1 and running the following command.

./x build library --stage 1 \
--target x86_64-unknown-linux-gnu,x86_64-unknown-helenos

This orchestrates the full boostrap process of downloading the previous compiler
version, using it to build a new version of the compiler with the HelenOS target
definitions, and then preparing a build of the standard library for the targets
specified on the command line.

After we have the toolchain built, we can link it with Rustup, which will allow
us to easily use this custom version of Rust to compile programs anywhere on
our system. To link this toolchain with the name local, we run the following
command in the Rust source directory.

rustup toolchain link local build/host/stage1

4.1.3 Docker-based automated toolchain build
To make the process of building the toolchain easier and reproducible, we

have also made available an automated build system of the whole toolchain via
a templated Dockerfile. It can be found in Attachment A.3. To use it, the Python
script gen.py has to be invoked to generate the Dockerfile from a template. The

3Downloadable from https://rustup.rs
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script allows selection of the CPU architecture-variant of HelenOS to build, and
takes a list of URLs of Git repositories with Rust programs to build.

The Dockerfile then defines two sets of artifacts, implemented as two different
build stages. The user can either ask to only build the applications, and then use
them in their own version of HelenOS. Or the build can execute one more build
stage, which copies these applications into a HelenOS build directory inside the
container, and builds a bootable ISO image of the full system with the applications
preinstalled.

4.2 Rust standard library tests and CLI utilities
As we explain in Chapter 2.3.2, running the Rust standard test suite on

HelenOS is not easily possible. Instead, we have built a small custom test suite
that verifies the functionality of the three main system APIs that we implemented
– filesystem, multithreading and thread synchronization.4 Source code of this test
suite is attached as Attachment A.5, and can be built with the following command,
assuming we have the toolchain linked under the name local.

cargo +local build --target x86_64-unknown-helenos --release

This will produce a binary in target/x86_64-unknown-helenos/release/rtest,
that we can then run on HelenOS. The test suite is also preinstalled in the ISO
image in Attachment A.2, where it can be simply run as the command rtest.

A passing result of the test suite on 64-bit ARM version of HelenOS is shown
in Figure 4.1. We are showing the demo of this platform because, as we will
explain later, this platform will not be able to run any of our GUI applications.
This test suite has helped us to find some omissions in our filesystem support,
and we have verified that it now passes on all HelenOS platforms we are able to
run Rust programs.

4.3 Image processing tools
As we predicted, after we have written the compiler and standard library

support, compiling Rust programs for HelenOS is very straightforward. The first
of the selected applications, resvg, could be downloaded and compiled just like
our test suite, without any modifications necessary.

Compiling imagecli did require some extra work, since it depends on crates
rand and atty. These crates provide very simple wrappers around libc calls, so
we need to add the necessary HelenOS bindings. This is trivial, as can be seen
from the complete patch to atty listed in Code fragment 4.2. Similarly to our
work on the standard library, we then just add links to our patched version to the
Cargo.toml file of imagecli project, and then we are also able to build and run it
on HelenOS.5

4Please note that parts of the test suite were generated using a large language model
(specifically GPT 4o from OpenAI). The author has then only manually reviewed and slightly
modified the tests. A disclaimer is also provided at the top of the relevant source files.

5A fork with this patch applied is available at https://github.com/mvolfik/imagecli-rs.

28

https://github.com/mvolfik/imagecli-rs


Figure 4.1 Passed test suite on 64-bit ARM HelenOS

Code fragment 4.2 HelenOS support in the atty crate

#[cfg(target_os = "helenos")]
pub fn is(stream: Stream) -> bool {

extern crate libc;

unsafe {
let handle = match stream {

Stream::Stdout => libc::stdout,
Stream::Stderr => libc::stderr,
Stream::Stdin => libc::stdin,

};
libc::isatty(libc::fileno(handle)) != 0

}
}
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The author assigns greater importance to demonstration that our work made it
easy to download and build a non-trivial Rust application for HelenOS, than to the
specifics of individual applications that we run as a demonstration. Consequentially,
the mentioned patches are not attached to our thesis, as they contain relatively
trivial modifications.

4.4 GUI applications
The implementation of a custom runtime of the Iced GUI library has been

pretty straightforward and can be found in Attachment A.4. After implementing
this runtime, we have created a simple image viewer as we planned in 2.4. In the
examples section of the Iced library, we also found an implementation of Conway’s
Game of Life, which we have also successfully ported to HelenOS.

The application logic is not particularly interesting. However, the implemen-
tation of the Iced runtime contains multiple interesting design decisions, and we
will dedicate the following section to describing our solution.

4.4.1 Wrapping the Iced GUI library
Our custom runtime is split into a shared part, and a platform-specific startup

and event detection code. The shared part, implemented in src/lib.rs, manages
the tiny-skia renderer and proxies calls between the running Iced application and
the platform-specific code. The platform-specific code can queue any events and
messages using the generic Program interface. Then, when a new frame should be
drawn, the platform-specific code calls the update method from the shared part,
which lets the application process all queued events, renders it to the graphical
surface of the window, and then requests this to be presented onto the screen.

On the platform-specific side, we have first implemented a minimalistic custom
mapping to the winit library, inspired by the existing iced-winit runtime. This has
multiple advantages. Firstly, this work allowed us to familiarize ourselves with the
Iced library and the required paradigm of event handling and rendering. Secondly,
the option of easy compile-time swapping of the platform-specific runtime backend
allowed us to later develop the image viewer in our local environment, allowing
faster testing of our changes.

After gaining confidence that our winit wrapper properly processes input events
and the shared part correctly calls the tiny-skia renderer, we have replicated the
backend functionality using native calls to HelenOS libraries.

The HelenOS implementation required carefully crafted unsafe code to correctly
provide an interface for the C callbacks. Definition of a callback is relatively
simple, as it simply takes a pointer to a Mutex containing the application object,
which it locks and calls the required method on it. An example of one such
callback is shown in Code fragment 4.3.

However, to be able to soundly create and use such pointer, this mutex needs
to be stored at a pinned memory location, i.e. it its adress must not ever change.
To guarantee this, we use the Pin contract from the standard library. The startup
code that handles this, included in Code fragment 4.4, is further complicated by
the requirement of passing the CreateSendMsg closure to the application, which we
explain in the following section.
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Code fragment 4.3 Raw HelenOS event handler

type Arg<T> = Mutex<App<T>>;
impl<T> App<T> {

const CALLBACKS: helenos_ui::ui_window_cb_t =
helenos_ui::ui_window_cb_t {

paint: Some(Self::paint_event),
// ...

};

unsafe extern "C" fn paint_event(
_window: *mut helenos_ui::ui_window_t,
app: *mut ffi::c_void,

) -> i32 {
let app = unsafe { &*(app as *const Arg<T>) };
let app = &mut *app.lock().unwrap();
app.paint();
0 // EOK

}

fn paint(&mut self) {
self.inner.update(self.cursor);
unsafe { helenos_ui::gfx_update(

helenos_ui::ui_window_get_gc(self.window.raw.as_ptr())
) };

}
}
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Code fragment 4.4 Initialization of application and callbacks6

fn run_app_in_window<App: ProgramExt>(
window: Window,
create_app: impl FnOnce(SendMsgFn<App>) -> App,

) {
let mut app = std::pin::pin!(MaybeUninit::uninit());
let app_ptr = app.as_ptr();
let send_msg = Box::new(move |msg: App::Message| {

// deref the pointer - the app must be initialized now
let app = unsafe { &*(app_ptr.0) };
app.lock().unwrap().inner.program.queue_message(msg);

});
app.set(MaybeUninit::new(Mutex::new(App {

inner: AppInner::new(create_app(send_msg)),
_pin: std::marker::PhantomPinned,
// ...

})));
let app = unsafe { app.assume_init_ref() };

let callbacks = std::pin::pin!(App::<T>::CALLBACKS);
unsafe {

helenos_ui::ui_window_set_cb(
window.get_raw_ptr(),
callbacks.as_mut_ptr(),

);
}

// ... run the event loop

// Stop the application, now we can safely destroy the
// pinned values.

}

4.4.2 Background tasks
Our implementation of the image viewer initially did the image resizing in the

main thread. However, this caused the application to freeze while the processing
was running, and for Conway’s Game of Life, implementing background tasks
becomes a strict requirement, since the game needs to periodically send a Tick
message to step the simulation without any user interaction.

To allow our Iced applications to run background tasks that interact with the
state of the application, they need to be able to send messages to the main thread.
Therefore, when creating the application object defined by the user of our Iced
runtime, we need to pass it a closure that references the application object. This

6The actual implementation is more complicated, this simplified version serves to illustrate
the design decisions described in the text.
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Figure 4.2 Game of Life running in HelenOS

creates the second complication for the code in Code fragment 4.4. We first need
to create a pinned memory location that contains MaybeUninit<Mutex<App>>.7 We
use this memory location to create the send_msg closure, which we then use to
truly initialize the application.

Implementation of a background task is then quite straightforward. The
application uses either a channel, or a pair of mutex and condition variable, to
request jobs from the worker, or to ask it to stop. The synchronization primitive
selection depends on the nature of the jobs. For the worker in image viewer that
handles resizing the viewed image, we use a mutex, since we are only interested in
the latest zoom request, and any intermediate zoom levels, requested by the user
while the worker was busy, can be ignored.

As an example of different requirements, Game of Life uses a channel to queue
simulation steps to the worker. The worker then needs to maintain its internal
queue, to detect the Stop request as soon as possible and ignore all other pending
requests at that moment.

7Remember, safe Rust code guarantees no undefined behavior, i.e. among other things no
access to uninitialized memory. Therefore, normal Rust types are required to always contain
a valid value. The MaybeUninit<T> type serves as an “escape hatch” from this rule – it has the
same memory layout as T, but is allowed to contain uninitialized memory. This allows taking a
pointer to a value, using it to construct the value itself and later casting the type of the memory
location to the fully initialized type with the unsafe function assume_init. This patterns aids
in creating self-referential types and other advanced constructs common in C that cannot be
efficiently expressed in safe Rust.
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Figure 4.3 Image processing and image viewer in HelenOS

4.5 Summary of platform support
We have attempted to port and test all of the above Rust programs on as many

architectures as possible. However, we encountered numerous issues of varying
kind, specific to individual architectures. We have spent non-trivial amount of
time trying to resolve each issue, but in many cases, even correctly identifying the
cause of the problem proved challenging and provided no indication of the difficulty
of the solution. We have therefore determined that fully resolving these issues
would excessively inflate the scope of this thesis, and accepted that improving the
platform support will remain a task for future work.
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The full list of supported platforms is shown in Table 4.1, with footnotes
shortly explaining the issues that prevented us from better support of each given
platform. Since for some platforms, we were unable to run GUI applications and
verify the results of image processing, we have also tested the chksum8 CLI utility,
which calculates checksums of files, and thus demonstrates some practical usability
of Rust on the given platforms.

Architecture Test suite and CLI utilities Image processing GUI apps
x86_64 3 3 3

PowerPC 3 3 3

IA-32a 3 3 7

SPARCb 3 3* 7

ARM 64-bitc 3 3* 7

ARM 32-bitd 7

MIPSe 7

RISC-Ve 7

IA-64f 7

Table 4.1 HelenOS platforms and their support for Rust programs

8https://github.com/chksum-rs/cli

∗The image processing tools ran correctly, but we could neither display the resulting images
on these systems, nor export them out from the system due to missing external disk support.
Therefore we could not verify the correctness of the output.

aOn the IA-32 architecture, some functions in native HelenOS libraries contain vector
instructions, which trigger General Protection Fault due to accessing incorrectly aligned stack
variables. We have identified this to be a fault on the Rust side, as it seemed to generate stack
frames of size with insufficient alignment. Unfortunately, we were unable to find a way to fix
this in the compiler. The data layout we specify for the platform correctly includes S128, i.e.
128-bit alignment of the stack, and we did not find out why this value is not respected.

bDue to SPARC bootloader limitations, executables of GUI applications could not be included
directly in the system image, as it is too large and causes the full kernel image to exceed the
maximum size of 8 MB. We have attempted optimizing the builds for code size, enabling LTO
and stripping symbols from the binaries, but this was not sufficient. We have also considered
the option of including the programs on a separate disk mounted into the system, but this
functionality is missing or currently broken in the SPARC HelenOS port.

cThe ARM64 port of HelenOS does not have window system support, so GUI applications
cannot run there.

dOn ARM32, we encountered issues with missing implementations of __atomic_* and __sync_*
builtin functions when linking the Rust standard library. These functions are generated by
compilers in places where atomic operations are used. On supported CPU architectures, these
functions are implemented using the respective atomic instructions, but if an instruction is
not available, a call to an external function is generated, in which the operating system can
implement this using a global lock or other methods.[16] We have attempted to provide the
missing implementations of these functions, but then we encountered further problems with
handling of ELF relocations in the HelenOS dynamic loader. At that point, we determined that
the effort required required to correctly support this platform would be excessive, and decided
to leave it fully unsupported for now.

eThese two variants of HelenOS we were unable to run at all, and therefore we did not
attempt porting Rust to them.

fThe Itanium architecture is unsupported by Rust/LLVM.
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Conclusion
We have succeeded in enabling compilation of Rust programs for HelenOS.

We have added five functioning HelenOS targets to the Rust compiler, and
implemented a substantial part of the required support in the Rust standard
library. We have verified that our implementation is correct by successfully running
a test suite that covers these APIs on all five supported platforms.

We have demonstrated the practical usability of our subset of standard library
support, since we were able to run multiple real-world Rust applications on
HelenOS, albeit not on all platforms due to unresolved issues and limitations
specific to individual HelenOS variants. Still, we have managed to run the full
suite of our ported programs on two platforms, x86_64 and 32-bit PowerPC,
and a bootable image of x86_64 HelenOS with our apps installed is provided in
Attachment A.2. We also note that the remaining HelenOS platforms should still
be able to benefit from our work when the outstanding issues are resolved.

The author also takes pride in integrating the Iced GUI library with the
HelenOS window system, which allows running a completely new paradigm of
graphical applications on HelenOS. Almost effortless porting of Conway’s Game
of Life, implemented in just around 1000 lines of Rust code, demonstrates the
power of the library.

Overall, we have increased the number of applications available for HelenOS
and provided the groundwork for porting further Rust programs. In many cases,
this only requires adding HelenOS support in crates that integrate with C APIs
of the operating system.

And finally, with no less importance, we have comprehensively described the
process of porting Rust to a new platform, hopefully aiding future developers in
their work on expanding Rust support to more operating systems.

Future work
This thesis has started in an unexplored area, with no prior efforts related to

running Rust code on HelenOS. Given the vastness of the Rust ecosystem, there
is a lot of work outstanding. Here is a list of a few areas of further work that the
author considers interesting:

• Expanding the standard library support and running the official
test suite. As explained in Sections 2.3.1 and 2.3.2, our work only imple-
ments the most important features of the standard library, and does not run
the official test suite due to missing networking support. This task would
require extra work in the underlying HelenOS implementation, but it would
push our work to an important milestone, running the official Rust standard
library test suite.

• Improving the architecture support. As we wrote in chapter 4.5, ports
only to three9 of the eight possible CPU architectures are fully functional.

9Here we dare to also count SPARC, although we did not run GUI applications on it. That
is because the only restriction is the executable size limitation, which needs to be resolved on
the side of HelenOS.
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During our work, we have encountered multiple issues where it was not
clear whether the problem was in HelenOS or in the output produced by
Rust – this was the case with for example with thread-local storage access,
as discussed in section 3.1. We suspect that the issues that prevented us
from running Rust programs on some platforms are of similar nature, and
thus expanding the architecture support would be a tedious undertaking.
However, the author argues that it full platform support were achieved, Rust
could become a first-class language for development of HelenOS userspace
applications.

• Supporting a selected async runtime. We did not have the chance
to test any async code on HelenOS, although it could open interesting
possibilities for interacting with the asynchronous paradigm communication
between HelenOS system services.

• Porting to HelenOS the Rust compiler itself. Although Rust by
default uses LLVM for assembly generation, and porting whole LLVM to
HelenOS would be an immensely difficult task (as it would likely require
complete C++ support), the experimental Cranelift codegen backend is
written purely in Rust code, and thus could be much easier to port. We
did not explore what would be the other requirements for running rustc on
HelenOS.
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A Attachments
A.1 rust.tar.gz: Rust compiler source code

This archive contains the full source code of the Rust compiler and standard
library with HelenOS support included. Our work is in the following files and
directories:

• compiler/rustc_target/src/spec/base/helenos.rs

• compiler/rustc_target/src/spec/targets/*_unknown_helenos*.rs

• library/std/src/sys/pal/helenos/

• library/std/src/sys/fs/helenos.rs

• library/std/src/sys/random/helenos.rs

• library/std/src/sys/stdio/helenos.rs

• src/doc/rustc/src/platform-support/helenos.md

The exact patch can be inspected at Github, where our work is also uploaded.
See the helenos branch of https://github.com/mvolfik/rust, the patch can be
seen at https://github.com/rust-lang/rust/compare/master...eb465ad.

Note that the attached archive purposely contains the .git directory. This
is necessary because Rust bootstrap process looks at the Git history of the file
src/bootstrap/download-ci-llvm-stamp to determine version of LLVM to download
from Rust CI servers.

A.2 helenos-rust-x86_64.iso: Bootable image with
Rust programs

This attachment is a bootable ISO image of the full HelenOS system with
installation of the Rust programs that were mentioned in this thesis. It is easily
runnable on any system with QEMU or VirtualBox. For QEMU, the command is:

qemu-system-x86_64 -device e1000,netdev=n1 -netdev \
user,id=n1,hostfwd=tcp::8080-:8080,hostfwd=tcp::8081-:8081 \
-usb -device nec-usb-xhci,id=xhci -device usb-tablet -device \
intel-hda -device hda-duplex -serial stdio -boot d \
-m 2G -enable-kvm -cdrom helenos-rust-x86_64.iso

The following Rust applications are installed:
rtest, chksum, resvg, imagecli, imageviewer-rs, life
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A.3 autobuild: Automatic build system

A.4 gui-apps: Rust GUI applications for HelenOS

A.5 rust-tests: Simple test suite of Rust libstd
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